Построение эпюр при растяжении-сжатии

Задача

Для ступенчатого бруса, нагруженного силами F1 и F2, приложенными к середине участков длиной l1 и l2, требуется построить эпюры продольной силы, напряжений, перемещений и дать оценку прочности.

Исходные данные:
F1=200кН; F2=150кН;
A1=15см2; A2=10см2;
l1=80см; l2=40см;
Модуль Юнга: E=2×105МПа;
[σ]=160МПа.




Решение задачи

Расчет опорной реакции

При заданных нагрузках в опорном сечении возникает только осевая составляющая реакции – R.
Из уравнения равновесия:

откуда

Знак “-“ указывает на обратное по сравнению с принятым направление опорной реакции R.

Для решения поставленной задачи R можно было не определять, так как продольную силу в любом сечении можно вычислить, рассматривая только правую отсеченную часть бруса.

Построение эпюры продольных сил N

На рассматриваемом стержне три силовых участка – BC, CK и KM.
Для определения величины N по участкам воспользуемся методом сечений.
Вычисляем значения продольной силы на участках:
— участок BC

Или

— участок CK

или

— участок KM

или

По полученным данным строим эпюру N

Штриховка эпюр обычно производится перпендикулярно к базовой линии, ордината эпюры указывает значение продольной силы в соответствующем сечении бруса.

В поле эпюры, в кружочке проставляется её знак, а рядом с эпюрой — её обозначение и, в квадратных скобках, размерность.

Как видно из построенной эпюры N, в местах приложения сосредоточенных сил F1 и F2 (сечения C и K) имеют место скачки по модулю на величину этих сил.

Построение эпюры напряжений σ

Напряжения в поперечных сечениях вычисляются по формуле σ=N/A.
Характер изменения нормальных напряжений по длине бруса будет таким же, как для продольной силы. Только в месте резкого изменения формы бруса (сечение D) на эпюре σ, в отличие от эпюры N, возникает скачок значений из-за изменения площади сечения A.
Вычислим напряжения на участках:

По рассчитанным значениям строим эпюру σ

Построение эпюры перемещений δ



Перемещения характерных сечений определяются по зависимости

где
δ0 — перемещение начала участка;
Δ liабсолютная деформация рассматриваемого участка.
Определяем абсолютные деформации отдельных участков стержня по формуле


Вычисляем перемещения характерных сечений

По результатам этих расчетов строим эпюру продольных перемещений

При этом необходимо учесть, что на участках без распределенной нагрузки эпюра δ меняется по линейному закону.

Проверка прочности стержня

Для оценки прочности бруса сравниваем максимальное по абсолютной величине значение напряжений с допускаемым

Условие прочности выполняется, недогрузка составляет

Другие примеры решения задач >
Краткая теория по сопромату >






Теория и решение задач по теормеху, сопромату, технической и прикладной механике, ТММ и ДетМаш