На силу трения в поступательной паре влияет также форма направляющих. В технике для обеспечения точности поступательного движения часто используются клинчатые направляющие (они удобны, т.к. автоматически устраняются боковые зазоры в поступательной паре).
Рассмотрим ползун, изображенный на рисунке 23, который движется в направляющих, имеющих форму клина.
Рисунок 23
Из баланса сил, действующих на ползун, определяется результирующая нормальная реакция RN. Однако силы трения возникают на боковых поверхностях клина и зависят от нормальных реакций RN1 и RN2, перпендикулярных к этим боковым поверхностям.
Результирующая нормальная реакция является геометрической суммой реакций RN1 и RN2:
Наиболее часто в технике используется симметричное расположение боковых поверхностей клинчатых направляющих. В этом случае:
Как видно, в этом случае в значительной мере можно влиять на величину силы трения изменением угла между плоскостями направляющих (здесь β – половина угла клина).
Приведенный коэффициент трения
Для дальнейших расчетов вводится понятие приведенного коэффициента трения (обозначается f‘ ):
При уменьшении угла β возрастает сила трения на боковых поверхностях клина при одной и той же результирующей нормальной реакции. При применении малых (близких к нулю) углов сила трения увеличивается до очень больших величин (при стремлении угла клина к нулю сила трения стремится к бесконечности). Именно это явление привело к появлению термина «заклинивание».
Этот эффект широко используется в бытовой практике и в технике (например: соединение деревянных строительных конструкций с помощью клиньев; применение для рубки дров специального топора – «колуна» с увеличенным углом заточки для предотвращения застревания при колке дров; применение клиньев для удержания бурильной колонны; применение клиноременных передач для увеличения тяговой способности; в крепежных резьбах для предотвращения самоотвинчивания и др).