Вращательное движение твердого тела – это движение, при котором тело имеет как минимум две неподвижные точки (рисунок 13).
Рисунок 13
Прямая, проходящая через эти точки, называется осью вращения.
Положение тела определено, если задан угол φ между плоскостями П0 и П, одна из которых неподвижна, а другая жестко связана с телом.
Уравнение вращательного движения твердого тела.
За положительное направление отсчета принимается вращение против хода часовой стрелки, если смотреть навстречу положительному направлению оси z.
Траекториями точек тела при его вращении вокруг неподвижной оси являются окружности, расположенные в плоскостях, перпендикулярных оси вращения.
Характеристики вращательного движения
Для характеристики изменения угла поворота с течением времени вводится величина, называемая угловой скоростью ω:
В технике угловая скорость – это частота вращения, выраженная в оборотах в минуту. За одну минуту тело повернется на угол 2πn, где n – число оборотов в минуту (об/мин). Разделив этот угол на число секунд в минуте, получим
Вектор угловой скорости – это вектор, направленный по оси вращения в ту сторону, откуда вращение видно происходящим против хода часовой стрелки, с модулем, равным модулю алгебраической угловой скорости
где k – единичный вектор оси вращения.
Угловое ускорение – мера изменения угловой скорости:
Вектор углового ускорения – производная вектора угловой скорости по времени (рисунок 1.4)
Если ε > 0 и ω > 0 (рисунок 14), то угловая скорость возрастает с течением времени и, следовательно, тело вращается ускоренно в рассматриваемый момент времени в положительную сторону. Направление векторов ω и ε совпадают, оба они направлены в положительную сторону оси вращения Oz.
Рисунок 14
При ε < 0 и ω < 0 – тело вращается ускоренно в отрицательную сторону. Направление векторов ω и ε совпадают, оба они направлены в отрицательную сторону оси вращения Oz.
Если ε < 0 и ω > 0, то имеем замедленное вращение в положительную сторону. Векторы ω и ε направлены в противоположные стороны.
Если ε > 0 при ω < 0 (рисунок 15), то имеем замедленное вращение в отрицательную сторону. Векторы ω и ε направлены в противоположные стороны.
Рисунок 15
Если угловая скорость ω = const, то вращательное движение называется равномерным. Уравнение равномерного вращения
Если угловое ускорение ε = const, то вращательное движение называется равнопеременным.
Уравнение равнопеременного вращения
и уравнение, выражающее угловую скорость в любой момент времени
представляют совокупность основных формул вращательного равнопеременного движения тела.
Далее: