Основной закон зацепления зубьев колес зубчатых передач

Основной закон зацепления профилей зубьев колес зубчатых передач гласит: для нормальной безотрывной работы передачи, составленной из двух профилей, входящих в высшую кинематическую пару, необходимо, чтобы нормаль к этим профилям в точке контакта в любой момент времени проходила через мгновенный центр их относительного вращения.

Зубья зубчатых колес составляют высшую пару IV класса, т.е. представляют собой некоторые поверхности, находящиеся в контакте.

Таким образом, профили зубьев – это кривые (а в некоторых случаях прямые) линии.

два профиля, находящиеся в контакте в точке А
Рисунок 34

На рисунке 34 показаны два профиля, находящиеся в контакте в точке А. Скорость точки А, принадлежащей первому профилю (V1), перпендикулярна радиусу О1А, соответственно, скорость точки А, принадлежащей второму профилю (V2), перпендикулярна радиусу О2А.

Рассмотрим проекции этих скоростей на общую нормаль (N-N), проведенную к профилям в точке их контакта (С1 – проекция скорости V1 , С2 – проекция скорости V2). Могут получиться различные соотношения между значениями этих проекций:

  1. С2 > С1 – точка А, принадлежащая второму профилю (А2), в направлении нормали движется быстрее точки А, принадлежащей первому профилю (А1). Второй профиль «убегает» от первого, в следующий момент произойдет разрыв кинематической пары (нарушится контакт между звеньями);
  2. С1 > С2 – точка А1 в направлении нормали движется быстрее точки А2 (положение на рисунке 34 соответствует этому случаю), то есть точка А1 стремится к внедрению  во второй профиль. Если вычертить следующее положение механизма, то первый профиль в области точки А будет накладываться на второй.
    В теории зацепления это явление носит название «интерференция профилей». В реальном механизме это приведет к заклиниванию или поломке передачи. Очевидно, что оба этих положения недопустимы – и разрыв кинематической пары, и, тем более, заклинивание и поломка делают передачу неработоспособной;
  3. С1 = С2 – условие нормальной безотрывной работы профилей.

Из рисунка 34 видно, что ΔAV1C1 подобен ΔO1AB1, и, соответственно, ΔAV2C2 подобен ΔO2AB2. Из подобия треугольников можно записать отношение сходственных сторон:

Здесь i12передаточное отношение от первого профиля ко второму (это отношение угловой скорости на входе к угловой скорости на выходе).

Из подобия треугольников O1B1W и O2B2W (W – точка пересечения общей нормали N-N с линией центров O1O2) получаем:

VW1 – скорость точки W, связанной с первым профилем,
VW2 – скорость точки W, связанной со вторым профилем.

Эти скорости совпадают не только по величине, но и по направлению (VW1O1W, VW2O2W, т.е. оба вектора перпендикулярны межосевому расстоянию O1O2).

Другие видео

Две точки совпадают по своему положению и имеют одинаковые скорости, то есть их относительная скорость равна нулю (VW1W2=0). Таким образом, точка W является мгновенным центром относительного вращения рассматриваемых профилей.

Исходя из вышеизложенного, можно следующим образом сформулировать условие работоспособности передачи, составленной из двух профилей, входящих в высшую кинематическую пару:

— для нормальной безотрывной работы профилей необходимо, чтобы нормаль к этим профилям в точке контакта в любой момент времени проходила через мгновенный центр их относительного вращения.
Это условие носит название основного закона зацепления.

Профили, удовлетворяющие основному закону зацепления, называются сопряженными, а кривые которыми они описаны являются взаимоогибаемыми кривыми. При работе передачи взаимоогибаемые кривые перекатываются друг по другу со скольжением. Геометрическое место мгновенных центров скоростей, связанных с первым и вторым колесами, являются центроидами.

При работе передачи центроиды касаются в мгновенном центре относительного вращения и перекатываются друг по другу без скольжения. При постоянном передаточном отношении центроиды представляют собой окружности, которые в теории зацепления называются начальными окружностями.

Таким образом, передачи с постоянным передаточным отношением – это передачи с круглыми колесами, которые используются в большинстве случаев практики. В этом случае мгновенный центр при работе передачи не меняет своего положения и называется полюсом зацепления.

Элементы зубчатого зацепления

Стандартами на зубчатое зацепление вводятся определенные обозначения параметров:

Z – число зубьев колеса;
d – диаметр;
h – высота;
p – шаг (расстояние между одноименными профилями зубьев, измеренное по дуге какой-либо окружности);
S – толщина зуба (также измеряется по дуге окружности);
e – ширина впадины между зубьями;
a – межосевое расстояние.
Вводятся также буквенные индексы, показывающие, к какой окружности относится параметр:
w – начальная окружность;
b (или B) – основная окружность;
a – окружность вершин;
f – окружность впадин;
Y – окружность произвольного радиуса;

Без буквенного индекса – делительная окружность. Делительная окружность – это окружность, на которой шаг (и угол профиля) является стандартным:

Как видно из формул, вносить в стандарт непосредственно значения шага неудобно, т.к. при этом диаметр делительной окружности всегда будет величиной иррациональной (при изготовлении круглых деталей измеряют диаметры, поэтому надо, чтобы именно диаметры имели удобную величину). Поэтому в стандарт вводится величина, характеризующая отношение шага к числу π, которая называется модулем зацепления ( обозначается «m» и представлена в стандарте в миллиметрах).

Таким образом, основные параметры делительной окружности определяются следующими формулами:

Модуль зацепления, с одной стороны обеспечивает условие взаимозаменяемости колес (работать в паре могут любые колеса одного модуля), с другой стороны определяет область применения зубчатых передач (передачи с m<1мм – мелкомодульные передачи – применяются в основном в небольших приборах; в общем машиностроении обычно применяют модули в пределах от 2мм до 5мм; модули более 10мм применяются в передачах тяжелого машиностроения).

Кроме буквенных индексов используются также индексы числовые. При расчете одной пары колес принято обозначать индексом «1» меньшее колесо пары (которое часто называют шестерней), индексом «2» – большее колесо.

Ниже приведены примеры обозначений параметров колес:

dw1, dw2 – диаметры начальных окружностей колес пары;
df1, df2 – диаметры окружностей впадин;
d1, d2 – диаметры делительных окружностей;
S1 – толщина зуба на делительной окружности первого колеса;
Sa2 – толщина зуба на окружности вершин второго колеса;
SY1 – толщина зуба на произвольно выбранной окружности;
ew1 – ширина впадины между зубьями на начальной окружности первого колеса;
haw1 – высота головки зуба первого колеса (часть зуба, расположенная вне начальной окружности);
hwf2 – высота ножки зуба второго колеса (часть зуба, расположенная внутри начальной окружности);
a – делительное межосевое расстояние (сумма радиусов делительных окружностей);
aw – межосевое расстояние (сумма радиусов начальных окружностей).

Следует обратить внимание на то, что шаги на начальных, делительных и основных окружностях для обоих колес пары одинаковы, поэтому в обозначениях этих параметров численный индекс отсутствует:

pw1=pw2=pw – шаг на начальной окружности;
p1=p2=p – шаг на делительной окружности;
pb1= pb2=pb – шаг на основной окружности (основной шаг).

Принятая система удобна, т.к. дает возможность по обозначению легко определить, что это за параметр и к чему он относится.

Кинематика зубчатых механизмов >
Курсовой проект по ТММ >

Сохранить или поделиться
Вы находитесь здесь:
Техническая механика Теория механизмов и машин Лекции по теории механизмов и машин (ТММ) Основной закон зацепления зубьев колес зубчатых передач

У нас можно заказать
решение задач и онлайн помощь

Онлайн помощь с решением задач по механике