Полный расчет балки на прочность и жесткость

Полный расчет балки на прочность и жесткость

Пример решения задачи полного расчета на прочность и жесткость стальной двутавровой балки при заданной системе внешних изгибающих нагрузок.

Задача

Выполнить полный расчёт на прочность и проверить жёсткость стальной, двутавровой, статически определимой балки на двух опорах
Расчетная схема балки
при следующих данных:
Интенсивность равномерно распределенной нагрузки q=26кН/м, продольный размер a=0,6м, сосредоточенная сила F=2qa, изгибающий момент m=4qa2.
Допускаемые нормальные напряжения [σ]=160МПа,
Модуль упругости I рода Е=200ГПа.
Допустимый прогиб балки [f]=l/400.

Другие примеры решений >
Помощь с решением задач >

Последовательность решения задачи
Для расчета балки на прочность

  1. Вычерчивается схема нагружения в масштабе, с указанием числовых значений приложенных нагрузок;
  2. Строятся эпюры внутренних силовых факторов Qy и Mx;
  3. По условию прочности подбирается двутавровое сечение (№ двутавра) стальной балки:
  4. Для балки двутаврового профиля выполняется полная проверка на прочность, приняв
  5. Проверяется прочность по главным напряжениям в опасных точках сечения по III гипотезе прочности
  6. По результатам расчетов дается заключение о прочности балки при выбранном сечении.
  7. В случае невыполнения условия прочности по главным напряжениям, подбирается новый номер двутавра.

Для расчета балки на жесткость

  1. С использованием универсальных уравнений метода начальных параметров (МНП) определяются углы поворота θ над опорами и прогибы в характерных сечениях (2-3 сечения), а также, максимальные прогибы балки в пролете и консольной части;
  2. По этим данным, в соответствии с эпюрой Mx, строится линия изогнутой оси балки;
  3. Проверяется выполнение условия жесткости балки.
  4. Если условие жесткости не удовлетворяется, подбирается новое двутавровое сечение, обеспечивающее необходимую жесткость.

Решение

Рассчитаем численные значения силы F и момента m, которые были заданы в виде переменных.

Вычерчиваем расчетную схему нагружения балки в масштабе, с указанием числовых значений приложенных нагрузок.

Показываем оси системы координат y-z и обозначаем характерные сечения балки.

Полный расчет стальной балки на прочность

Определение реакций в шарнирных опорах балки


Направим реакции опор вверх и запишем суммы моментов относительно точек на опорах, нагрузок приложенных к балке

Из составленных уравнений выражаем и находим реакции.
Из первого уравнения

из второго

Положительные значения указывают на то, что произвольно заданное направление реакций вверх оказалось верным.

Выполним проверку найденных реакций опор спроецировав все силы на ось y

Равенство суммы проекций сил нулю говорит о том что реакции опор определены правильно.

Более подробно, пример определения опорных реакций для балки рассмотрен здесь

А также в нашем коротком видеоуроке:

Другие видео

Построение эпюр внутренних силовых факторов

Рассчитаем значения внутренних поперечных сил и изгибающих моментов в сечениях балки на каждом силовом участке методом сечений.

Балка имеет 4 силовых участка.
Силовые участки балки

1 участок (AB)
Поперечная сила и изгибающий момент на первом участке

2 участок (BC)
Внутренние силовые факторы на втором участке

3 участок (CD)

4 участок (DK)

Здесь, значения Qy на границах участка имеют одинаковый знак, поэтому на этом участке, на эпюре Mx экстремума не будет.

Подробный пример построения эпюр поперечных сил Q и изгибающих моментов M для балки

По полученным данным строим эпюры внутренних поперечных сил Qy и изгибающих моментов Mx.
Эпюры внутренних силовых факторов балки
Проверка построенных эпюр:
— по дифференциальным зависимостям

— в сечениях балки, где приложены сосредоточенные силы, на эпюре Qy имеются скачки значений на величину соответствующей силы;
— в сечениях балки, где приложены изгибающие моменты, на эпюре Mx скачки значений на величину соответствующего момента.
Все условия выполнены, следовательно, эпюры построены верно.

По эпюрам видно, что опасным является сечение балки в точке C, где:
Mx=Mx max=-24,336кНм
Qy=-4,68кН

Подбор двутаврового сечения балки

Подберем двутаврового сечение балки по условию прочности по нормальным напряжениям

где
Mx max – максимальное значение внутреннего изгибающего момента в сечениях балки. Принимается с построенной эпюры Mx;
Wx – осевой момент сопротивления поперечного сечения балки относительно горизонтальной оси x;
[σ] – допустимые нормальные напряжения.

Подробнее о том, как подбирается сечение балки

Выразим и рассчитаем минимально необходимое значение осевого момента сопротивления поперечного сечения балки Wx обеспечивающего её прочность по нормальным напряжениям

По сортаменту прокатной стали выбираем номер двутавра имеющий осевой момент сопротивления близкий к расчетному Wx=152,1см3 в большую сторону.

Это двутавр №18а у которого Wx=159,0см3.

Максимальные нормальные напряжения в сечении

Этот двутавр будет работать при максимальных нормальных напряжениях в крайних слоях опасного сечения балки.

Максимальные нормальные напряжения выбранного номера двутавра не превышают допустимых значений, значит сечение подобрано верно.

Полная проверка на прочность двутаврового сечения

При изгибе тонкостенных прокатных профилей, таких как, например, двутавр или швеллер, в местах соединения стенки с полкой нормальные и касательные напряжения имеют не максимальные, но достаточно большие значения.
Эпюры нормальных и касательных напряжений
Их совместное действие, выраженное в виде главных (эквивалентных) напряжений, может превышать допустимые значения, что будет означать потерю прочности в этих точках поперечного сечения балки.

В отношении главных напряжений неблагоприятным является сечение балки B, в котором максимально значение поперечной силы при значительном изгибающем моменте:

Qy=-31,2кН
Mx=-18,72кНм

Для полной проверки на прочность построим эпюры нормальных и касательных напряжений в сечении B для выбранного номера двутавра.

Построение эпюр нормальных и касательных напряжений в сечении балки подробно рассмотрено здесь:

Построение эпюры нормальных напряжений

Построение эпюры касательных напряжений

Для выполнения расчетов, из сортамента выпишем необходимые геометрические характеристики выбранного номера двутавра:
Высота сечения
h=180мм;
Ширина сечения
b=100мм;
Толщина стенки
d=5,1мм;
Толщина полки
t=8,3мм;
Осевой момент инерции поперечного сечения
Ix=1430см4;
Статический момент сечения
Sx=89,8см3.

Двутавровое сечение по высоте имеет 5 характерных точек: верхнюю (1), нижнюю (5), среднюю (3) и две точки в местах перехода стенки в полку двутавра (2 и 4).

Для построения эпюр, определим значения напряжений в указанных точках сечения.

Нормальные напряжения в сечении балки распределяются по линейному закону, поэтому для построения эпюры достаточно найти максимальные значения

Касательные напряжения в характерных точках сечения рассчитываются по формуле Журавского

где
Qy — поперечная сила в данном сечении. Принимается с эпюры с учетом знака;
Ix – осевой момент инерции поперечного сечения;
by – ширина сечения на уровне рассматриваемой точки;
Sx* — статический момент части сечения, расположенной между уровнем рассматриваемой точки и верхним (нижним) краем сечения.

Рассчитаем значения касательных напряжений

В точках 1 и 5

Так как выше точки 1 и ниже точки 5 площадь сечения равна нулю, то статический момент Sx* для этих точек тоже равен нулю, следовательно

В точке 3

В точке 3 будут максимальные касательные напряжения, т.к. для неё статический момент сечения Sx максимальный при минимальной ширине сечения d

Видно, что прочность сечения по касательным напряжениям обеспечена.

В точках 2 и 4

В точках, где стенка двутавра переходит в полку, будут скачки напряжений, так как на уровне этих точек резко меняется ширина сечения

Рассчитаем значения напряжений в этих точках для стенки (с) и полки (п)

Статический момент полки двутавра

Касательные напряжения в точках 2 и 4 полки

Касательные напряжения в точках 2 и 4 стенки

По этим данным строим эпюры нормальных и касательных напряжений для выбранного номера двутавра.

Рассчитаем величину главных напряжений в точках соединения полки со стенкой двутавра (т. 2 и 4)

Нормальные напряжения в рассматриваемых точках

Эквивалентные напряжения в опасных точках сечения

Как видно, величина эквивалентных напряжений не превышает допустимых значений, следовательно, выбранный номер двутавра удовлетворяет условию прочности и по главным напряжениям.

Полный расчет балки на жесткость

Для того чтобы балка удовлетворяла условию жесткости, линейные перемещения (прогибы) балки yz не должны превышать заданных допустимых значений [f], т.е. должно выполняться условие жесткости

Расчет перемещений сечений балки

Расчет перемещений сечений балки выполним методом начальных параметров (МНП).

Шаблоны уравнений метода начальных параметров имеют вид:

Здесь:
θz — угловое перемещение (угол наклона) рассматриваемого сечения;
yz — вертикальное линейное перемещение (прогиб) рассматриваемого сечения балки;
z – расстояние от выбранного начала координат балки до рассматриваемого сечения (координата);
θ0, y0 — соответственно угловое и линейное перемещения балки в выбранном начале координат (начальные параметры);
E – модуль упругости I рода для материала балки;
Ix – осевой момент инерции сечения балки;
m, F, q – соответственно моменты, сосредоточенные силы и распределенные нагрузки, приложенные к балке (включая опорные реакции и компенсирующую распределенную нагрузку);
a, b – расстояние от начала координат до соответствующих моментов m и сил F;
c – расстояние от начала координат до сечения балки, где начинается действие распределенной нагрузки q.

Подробный пример расчета перемещений сечений балки методом начальных параметров.

Составляем уравнения МНП для заданной балки

Начало координат принимаем в крайнем правом сечении балки, так как оно расположено на опоре.
Начало координат балки
Распределенная нагрузка не доходит до конца балки, поэтому продляем её действие и на этой же длине добавляем компенсирующую нагрузку той же интенсивности но противоположного направления.
Продление и компенсация распределенной нагрузки
Запишем нагрузки в уравнения МНП последовательно по участкам с учетом знаков

Для определения начальных параметров θ0 и y0 запишем граничные условия.
Деформация балки
На опорах прогибы балки равны нулю, т.е.

Из второго граничного условия, используя уравнение прогибов для точки B определим угол поворота сечения в начале координат θ0

Откуда, при z=3м

Для построения линии изогнутой оси балки определим углы наклона сечений балки на опорах θB, θK и прогибы в характерных сечениях yA, yC, yD.

Углы поворота сечений на опорах

Далее, для краткости, сократим дробь перед скобками

Линейные перемещения (прогибы) характерных сечений балки
Прогиб сечения A (yz при z=3,6м)

Прогиб сечения C (yz при z=1,8м)

Прогиб сечения D (yz при z=0,6м)

Расчет максимальных прогибов балки

Экстремумы прогибов балки будут в точках, где угол наклона сечения балки равен нулю.
Экстремумы прогибов балки
Для их определения, приравниваем к нулю уравнения углов наклона сечений по каждому участку балки, откуда определяем координаты z экстремумов прогибов на участке (если они есть).
1 участок (KD).

Уравнение решений не имеет (т.е. экстремумов на участке нет), это значит, что максимальный прогиб на этом участке будет на его левой границе (в сечении D), так как правая точка участка расположена на опоре.

2 участок (DC).

То есть, экстремум прогибов на втором участке будет на расстоянии z2=0,782м от начала координат.

3 участок (CB).

Экстремум прогибов на третьем участке в сечении, на расстоянии z3=2,269м от начала координат.

4 участок (BA).

Данное уравнение решений также не имеет, следовательно, максимальный прогиб на конце консоли, так как на правой границе участка – опора.

Значения максимальных прогибов балки на втором и третьем участках определяем из соответствующих уравнений прогибов для найденных значений z.

По полученным данным строим линию изогнутой оси балки в соответствии с эпюрой изгибающих моментов Mx и с указанием углов поворота сечений на опорах.
Линия изогнутой оси балки

Проверка балки на жесткость

Проверяем балку на жесткость, сравнивая по модулю максимальные значения прогибов ymax в пролёте и на консольной части с допустимыми [f].

Балка считается жесткой, если прогибы её сечений не превышают допустимых значений, т.е.

Рассчитаем абсолютные значения допустимых прогибов заданной балки:
В пролете
Допустимый прогиб в пролете балки
На консольной части
Допустимый прогиб на консоли балки
Для проверки на жесткость сравниваем величину рассчитанных ранее максимальных прогибов сечений балки с соответствующими допустимыми значениями.

В пролете

На консоли

Как видно, максимальный прогиб на конце консольной части балки превышает соответствующее допустимое значение, следовательно, балка не удовлетворяет заданному условию жесткости.

Жесткость балки можно увеличить до требуемого значения путем увеличения момента инерции её сечения, т.е. подбором сечения большего размера.

Подберем двутавр другого номера, который будет обеспечивать необходимую жесткость балки.

Определяем, во сколько раз надо уменьшить величину максимального перемещения сечения.

Тогда, расчетный момент инерции нового сечения балки

По сортаменту выбираем двутавр №20 с осевым моментом инерции сечения Ix=1840см4.

Выполняем проверку:

Для начала требуется пересчитать угол наклона сечения балки в начале координат.

Рассчитываем прогиб сечения A с новым размером сечения

Условие жесткости выполняется.

Таким образом, двутавр №20 обеспечивает необходимую прочность и жёсткость заданной балки.
Полный расчет заданной балки на прочность и жёсткость выполнен.

Другие примеры решения задач >

Сохранить или поделиться
Вы находитесь здесь:

У нас можно заказать
решение задач и онлайн помощь

Онлайн помощь с решением задач по механике